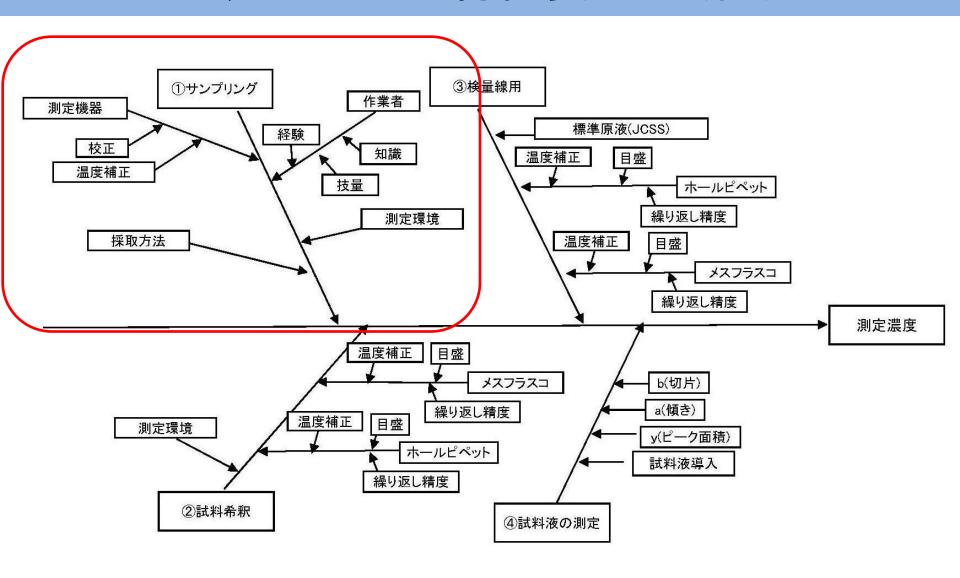
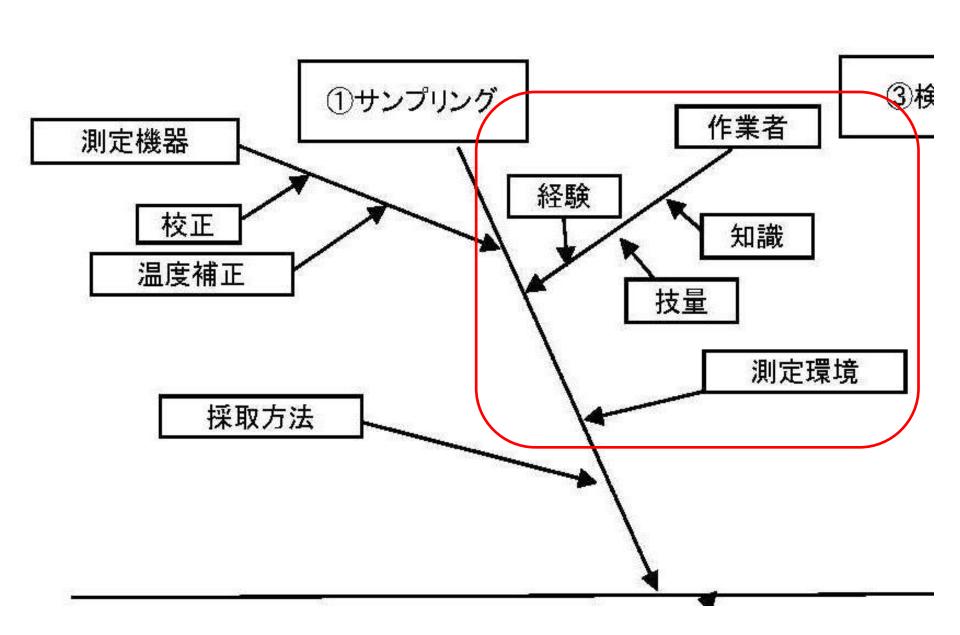
コンタミネーションに対する一考察

株式会社ジーエス環境科学研究所 ②村田 功一、石橋 裕章、野村 梓


コンタミネーションとは・・・

- ①環境中の異物が実験系に混入する
- ②環境から隔離されて封じ込められていた 実験材料が生活環境に漏れ出す etc.



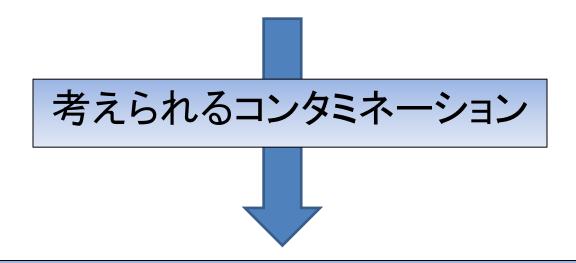
測定対象とするべき系以外の環境からの 異物混入により、測定値に誤差が生じること

測定における特性要因図(例)

測定における特性要因図(例)

コンタミネーションの影響評価

コンタミネーションの原因を検討しその影響を把握しておくことで、影響し得る因子の混入を未然に防止するとともに、異常値の発生時の原因追究に活用していくことができる。


本報告の内容

環境汚染物質である塩化水素及びアンモニアを取り上げ、考えられるコンタミネーションの原因を検討し、その影響について評価した結果を報告する。

対象物質:塩化水素(吸収瓶法)

分析方法:イオンクロマトグラフによる

塩化物イオン濃度の測定

汗または水道水の混入

- ・ 汗による影響
- ⇒蒸留水を体にかけ、その蒸留水を分析

試料名	塩化物イオン濃度
顏十蒸留水	124.4mg/L
腕+蒸留水	366.4mg/L

やはり影響はかなり大きい

・実際に起こり得る状況を想定(汗による影響)

パターン①

手に蒸留水をかけ、その蒸留水を0.1ml 吸収液に混入

パターン②

吸収瓶の内側を直に手で触れた後、 通常の手順どおりメスアップ

パターン③

汗を直接、吸収液に0.1ml混入

-パターン①~③の分析結果

試料名	塩化物イオン 濃度	塩化水素濃度※
ブランク	0.087mg/L	
パターン①	0.138mg/L	0.04mg/m³
パターン②	0.382mg/L	0.27mg/m³
パターン③	14.499mg/L	13.5mg/m³

※ばい煙測定時を想定し、大気圧101.32kPa、

採気量60L、GM温度25.0℃、試料定容量50mlとした。

試料名	塩化物イオン 濃度	塩化水素濃度
パターン③	14.499mg/L	13.5mg/ m ³
基準値※		80mg/m³

※基準値は大気汚染防止法による

・実際に起こり得る状況を想定(水道水による影響)

パターン④ 水道水で洗浄後、乾燥させた吸収瓶に そのまま吸収液を入れ分析

パターン⑤ 直接水道水を混入(1ml)

-パターン4~5の分析結果

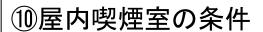
試料名	塩化物イオン 濃度	塩化水素濃度※
ブランク	0.087mg/L	
パターン④	0.242mg/L	0.14mg/ m ³
パターン⑤	0.501mg/L	0.38mg/ m ³

※ばい煙測定時を想定し、大気圧101.32kPa、 採気量60L、GM温度25.0℃、試料定容量50mlとした。

対象物質:アンモニア(検知管法)

分析方法:ガステック気体採取器GV-100

ガステック検知管№3Lを使用


考えられるコンタミネーション

トイレやタバコの煙からの混入

		· · · · · · · · · · · · · · · · · · ·
測定点	濃度(ppm)	
1	<0.5	
2	<0.5	①トイレ内 ②トイレ内 ③トイレ内
3	<0.5	
4	<0.5	
5	<0.5	④トイレ内(排水溝隙間) ⑤トイレ内 ⑥-1マンホール:隙間
6-1	2.0	
6 -2	<0.5	
6 -3	<0.5	⑥─2マンホール:上 ⑥─3マンホール:1m離 ⑥─4 マンホール:2m離
<u>6</u> -4	<0.5	
7	<0.5	
8	<0.5	⑦環境科学北側マンホール① 8環境科学北側マンホール②

測定点	濃度(ppm)
9	<0.5
10	0.75

- -部屋の広さ 約8.2㎡
- ・タバコを1本喫煙後に測定

9屋外喫煙所

⑩屋内喫煙室

測定点	濃度(ppm)
6 -1	2.0
10	0.75
基準値※	1.0

※基準値は京都府環境を守り育てる条例による

まとめ

塩化水素汗による影響⇒大きい 13.5mg/㎡ 水道水による影響⇒小さい

•アンモニア トイレ⇒大きい 2ppm タバコ⇒大きい 0.75ppm

考察

- ・作業者のコンタミネーションに対する 意識を高めるためには、本取組は非常 に有用であると考えられる
- ・コンタミネーションの影響を把握しておくことは、影響し得る因子の混入を未然に防止するとともに、異常値発生時の原因追究に活用していくことができる

ご清聴ありがとうございました